UNBUNDLING QUANTITATIVE EASING: TAKING A CUE FROM TREASURY AUCTIONS

Yuriy Gorodnichenko UC Berkeley & NBER

Walker Ray UC Berkeley

QUANTITATIVE EASING

DID QE WORK?

DID QE WORK?

Ben Bernanke: "The problem with QE is it works in practice but it doesn't work in theory."

DID QE WORK?

- Ben Bernanke: "The problem with QE is it works in practice but it doesn't work in theory."
- Standard macro-finance framework: demand for financial assets is determined by intertemporal substitution (hence, no clear role for QE)

HOW DID QE WORK?

Possible channels:

• Forward guidance

FOMC (Dec 16, 2008): "The Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some time."

• "Delphic" effect

Bernanke (Dec 1, 2008): "As you know, this extraordinary period of financial turbulence is now well into its second year."

• Preferred habitat

Bernanke (Dec 1, 2008): "The Fed could purchase longer-term Treasury or agency securities on the open market in substantial quantities. This approach might influence the yields on these securities..."

HOW DID QE WORK?

Possible channels:

• Forward guidance

FOMC (Dec 16, 2008): "The Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some time."

• "Delphic" effect

Bernanke (Dec 1, 2008): "As you know, this extraordinary period of financial turbulence is now well into its second year."

• Preferred habitat

Bernanke (Dec 1, 2008): "The Fed could purchase longer-term Treasury or agency securities on the open market in substantial quantities. This approach might influence the yields on these securities..."

• How can we test these theories with a handful (3?) of QE events?

HOW DID QE WORK?

Possible channels:

• Forward guidance

FOMC (Dec 16, 2008): "The Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some time."

• "Delphic" effect

Bernanke (Dec 1, 2008): "As you know, this extraordinary period of financial turbulence is now well into its second year."

• Preferred habitat

Bernanke (Dec 1, 2008): "The Fed could purchase longer-term Treasury or agency securities on the open market in substantial quantities. This approach might influence the yields on these securities..."

- How can we test these theories with a handful (3?) of QE events?
- Can we have natural experiments when we can rule out some channels? (e.g., the Chinese central bank announces its plans to spend \$300 bn to buy U.S. Treasuries to commemorate some anniversary)

• Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time
 - Treasury futures contracts (high-freq. identification, 1995-present)

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time
 - Treasury futures contracts (high-freq. identification, 1995-present)
 - Relatively large surprise movements in prices:
 - A one std shock in demand \Rightarrow 2 b.p. change in yield

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time
 - Treasury futures contracts (high-freq. identification, 1995-present)
 - Relatively large surprise movements in prices:
 - A one std shock in demand \Rightarrow 2 b.p. change in yield
 - Comparison (Chodorow-Reich 2014): Bernanke's speech on Dec 1, 2008 reduced yields (5-year maturity) by 9 b.p.

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time
 - Treasury futures contracts (high-freq. identification, 1995-present)
 - Relatively large surprise movements in prices:
 - A one std shock in demand \Rightarrow 2 b.p. change in yield
 - Comparison (Chodorow-Reich 2014): Bernanke's speech on Dec 1, 2008 reduced yields (5-year maturity) by 9 b.p.
 - Isolate demand shocks (mostly institutional investors)

- Use Treasury auctions to assess the role of preferred habitat theories in rationalizing QE effects.
- Why Treasury auctions?
 - Large volume (\$150 billion auctioned every month in recent years)
 - Information going back to 1979 (crisis vs. normal times)
 - Auctions for specific maturities are spread in time
 - Treasury futures contracts (high-freq. identification, 1995-present)
 - Relatively large surprise movements in prices:
 - A one std shock in demand \Rightarrow 2 b.p. change in yield
 - Comparison (Chodorow-Reich 2014): Bernanke's speech on Dec 1, 2008 reduced yields (5-year maturity) by 9 b.p.
 - Isolate demand shocks (mostly institutional investors)
- Main result: "preferred habitat" accounts for most of QE effects

TREASURY AUCTIONS

TREASURY OFFERING ANNOUNCEMENT $^{\scriptscriptstyle 1}$

Term and Type of Security	30-Year Bond
Offering Amount	\$16,000,000,000
Currently Outstanding	\$0
CUSIP Number	912810QS0
Auction Date	August 11, 2011
Original Issue Date	August 15, 2011
Issue Date	August 15, 2011
Maturity Date	August 15, 2041
Dated Date	August 15, 2011
Series	Bonds of August 2041
Yield	Determined at Auction
Interest Rate	Determined at Auction
Interest Payment Dates	February 15 and August 15
Accrued Interest from 08/15/2011 to 08/15/2011	None
Premium or Discount	Determined at Auction
Minimum Amount Required for STRIPS	\$100
Corpus CUSIP Number	912803DT7
Additional TINT(s) Due Date(s) and	August 15, 2041
CUSIP Number(s)	912834KP2
Maximum Award	\$5,600,000,000
Maximum Recognized Bid at a Single Yield	\$5,600,000,000
NLP Reporting Threshold	\$5,600,000,000
NLP Exclusion Amount	\$0

TREASURY AUCTION RESULTS

Term and Type of Security		30-Year Bond		
CUSIP Number		912810QS0		
Series	Bond	ls of August 2041		
Interest Rate		3-3/4%		
High Yield ¹		3.750%		
Allotted at High		41.74%		
Price		100.000000		
Accrued Interest per \$1,000		None		
Median Yield ²		3.629%		
Low Yield ³		3.537%		
Issue Date		August 15, 2011		
Maturity Date		August 15, 2041		
Original Issue Date		August 15, 2011		
Dated Date		August 15, 2011		
	Tendered	Accepted		
Competitive	\$33,305,800,000	\$15,985,160,000		
Noncompetitive	\$14,855,600	\$14,855,600		
FIMA (Noncompetitive)	\$0	\$0		
Subtotal ⁴	\$33,320,655,600	\$16,000,015,600 ⁵		
SOMA	\$489,928,400	\$489,928,400		
Total	\$33,810,584,000	\$16,489,944,000		
	Tendered	Accepted		
Primary Dealer ⁶	\$23,734,000,000	\$10,921,532,000		
Direct Bidder ⁷	\$6,567,000,000	\$3,119,654,000		
Indirect Bidder ⁸	\$3,004,800,000	\$1,943,974,000		
Total Competitive	\$33,305,800,000	\$15,985,160,000		

TREASURY FUTURES

• Standardized contracts (Chicago Mercantile Exchange)

- Millions of contracts are traded every day
- Intraday data

TREASURY FUTURES

• Standardized contracts (Chicago Mercantile Exchange)

- Millions of contracts are traded every day
- Intraday data

• Four maturities

- 2 year (remaining maturity 1 year 9 months to 2 years)
- 5 year (4 years 2 months to 5 years 3 months)
- 10 year (6 years 6 months to 10 years)
- 30 year (at least 15 years)

TREASURY FUTURES

• Standardized contracts (Chicago Mercantile Exchange)

- Millions of contracts are traded every day
- Intraday data

• Four maturities

- 2 year (remaining maturity 1 year 9 months to 2 years)
- 5 year (4 years 2 months to 5 years 3 months)
- 10 year (6 years 6 months to 10 years)
- 30 year (at least 15 years)

• We match futures prices to maturities of auctioned securities

– For example, 10-year futures is matched to 7-year Treasury auction

DEMAND SHOCK FOR TREASURIES

$$D_t^{(m)} = \left(\log P_{t,post}^{(m)} - \log P_{t,pre}^{(m)}\right) \times 100$$

t = time of auction

m = maturity

 $P_{t,post}^{(m)}$ = futures price 30 minutes after auction results are announced log $P_{t,pre}^{(m)}$ = futures price 30 minutes before auction closes

SHOCKS

SHOCKS

DESCRIPTIVE STATS FOR SHOCKS

Futures	Mean	St. Dev.	Ν	
	(1)	(2)	(3)	
$D^{(2Y)}$	-0.000	0.034	871	
$D^{(5Y)}$	0.002	0.092	871	
$D^{(10Y)}$	0.007	0.143	871	
$D^{(30Y)}$	0.006	0.245	871	

DESCRIPTIVE STATS FOR SHOCKS

	Маан	C4 Davi	NT		Correlations			
Futures	Mean	Sl. Dev.	IN	_	$D^{(2Y)}$	$D^{(5Y)}$	$D^{(10Y)}$	$D^{(30Y)}$
	(1)	(2)	(3)		(4)	(5)	(6)	(7)
$D^{(2Y)}$	-0.000	0.034	871		1.000			
$D^{(5Y)}$	0.002	0.092	871		0.866	1.000		
$D^{(10Y)}$	0.007	0.143	871		0.782	0.958	1.000	
$D^{(30Y)}$	0.006	0.245	871		0.672	0.848	0.922	1.000

August 11, 2011; Financial Times: "An auction of 30-year US Treasury bonds saw weak demand... bidders such as pension funds, insurers and foreign governments shied away. 'There's not too many ways you can slice this one, it was a very poorly bid auction.'"

December 12, 2010; Financial Times: "Large domestic financial institutions and foreign central banks were big buyers at an auction of 30-year US Treasury bonds on Thursday. 'Investors weren't messing around...You don't get the opportunity to buy large amounts of paper outside the auctions and 'real money' were aggressive buyers.'"

	$D^{(2Y)}$	$D^{(5Y)}$	$D^{(10Y)}$	$D^{(30Y)}$	Pooled
	(1)	(2)	(3)	(4)	(5)
Bid-to-Cover	0.03	-0.04	-0.45*	-1.37	-0.08
[expected]	(0.11)	(0.12)	(0.24)	(1.65)	(0.08)
Bid-to-Cover	1.38***	1.37***	2.11***	2.16***	1.65***
[unexpected]	(0.24)	(0.24)	(0.22)	(0.63)	(0.14)
Observations	238	306	227	100	871
\mathbb{R}^2	0.124	0.189	0.294	0.215	0.198

	$D^{(2Y)}$	$D^{(5Y)}$	$D^{(10Y)}$	$D^{(30Y)}$	Pooled
	(1)	(2)	(3)	(4)	(5)
By bidder type:					
Indirect Bidders	2.79***	3.91***	4.48***	8.86***	4.44***
	(0.40)	(0.72)	(0.46)	(1.23)	(0.42)
Direct Bidders	2.16***	1.27*	0.35	1.32	1.23***
	(0.83)	(0.74)	(0.84)	(1.02)	(0.44)
Primary Dealers	0.73**	0.73**	1.58***	-0.03	0.88***
	(0.36)	(0.31)	(0.31)	(0.63)	(0.17)
Observations	138	228	187	80	633
R ²	0.362	0.339	0.399	0.679	0.376

PERSISTENCE OF THE RESPONSE

$y_t = \gamma + \phi D_t + error$

 D_t = first principal component in $D_t^{(m)}$ (intraday change)

 y_t = outcome variable (intraday or daily change)

 $y_t = \gamma + \phi D_t + error$

Corporate debt and secondary market for Treasuries

	Estimate (s.e.)	Ν	\mathbb{R}^2	Sample
LT Treasuries	0.312***	662	0.679	2002-2015
	(0.016)			
ST Treasuries	0.022***	662	0.528	2002-2015
	(0.001)			
LQD ETF	0.110***	662	0.544	2002-2015
	(0.008)			
Aaa [†]	-2.295***	871	0.173	1995-2015
	(0.212)			

 † = daily frequency for the dependent variable

 $y_t = \gamma + \phi D_t + error$

Inflation expectations and commodities

	Estimate (s.e.)	Ν	R ²	Sample
10Y Inflation Swap [†]	-0.172	618	0.003	2004-2015
	(0.131)			
2Y Inflation Swap [†]	0.044	618	0.000	2004-2015
	(0.229)			
GOLD ETF	0.021	595	0.004	2004-2015
	(0.015)			
GSCI (commodity index) [†]	0.008	871	0.000	1995-2015
	(0.056)			

 † = daily frequency for the dependent variable

$y_t = \gamma + \phi D_t + error$

Default risk, volatility, and liquidity

	Estimate (s.e.)	Ν	\mathbb{R}^2	Sample
Baa-Aaa [†]	-0.056	871	0.001	1995-2015
	(0.074)			
CDS (auto industry) [†]	-3.254	627	0.000	2004-2015
	(5.796)			
CDS (banks industry) [†]	0.426	627	0.004	2004-2015
	(0.450)			
VIX^\dagger	0.058	871	0.001	1995-2015
	(0.082)			
LIBOR-OIS spread [†]	-0.001	871	0.001	1995-2015
	(0.001)			

 † = daily frequency for the dependent variable

Changes in zero-coupon spot rates as in Gurkaynak et al. (2007)

Changes in zero-coupon spot rates as in Gurkaynak et al. (2007)

EMPIRICAL FRAMEWORK

$$\Delta R_t^{(m)} = \alpha^{(m)} + \beta^{(m)} D_t^{(m')} + \epsilon_t^{(m)}$$

m = maturity t = auction date $\Delta R_t^{(m)} = \text{daily changes in spot rates for}$ $D_t^{(m')} = \text{intraday surprise movement in Treasury futures price at maturity } m'$

EMPIRICAL FRAMEWORK

$$\Delta R_t^{(m)} = \alpha^{(m)} + \beta^{(m)} D_t^{(m')} + \epsilon_t^{(m)}$$

m = maturity t = auction date $\Delta R_t^{(m)} = \text{daily changes in spot rates for}$ $D_t^{(m')} = \text{intraday surprise movement in Treasury futures price at maturity } m'$

Plot $\beta^{(m)}$ against *m* for

- short auctions (m' = 2-7 years) vs long auctions (m' = 10-30 years)
- low- vs high-risk aversion periods (Romer and Romer 2017)

RATE RESPONSE $\beta^{(m)}$ by RISK AVERSION AND SHOCK TYPE

Rate response $\beta^{(m)}$ by risk aversion and shock type

• Can the Fed decrease long-term Treasury rates relative to short-term rates?

- Can the Fed decrease long-term Treasury rates relative to short-term rates?
 - Yes, it can during financial crises (segmented markets)
 - Unlikely during normal times
 - The whole term structure is likely to move
 - The largest reaction may be for maturities not directly purchased by the Fed

- Can the Fed decrease long-term Treasury rates relative to short-term rates?
 - Yes, it can during financial crises (segmented markets)
 - Unlikely during normal times
 - The whole term structure is likely to move
 - The largest reaction may be for maturities not directly purchased by the Fed
- Can the Fed move the entire term structure of interest rates by buying Treasuries in a specific maturity segment?

- Can the Fed decrease long-term Treasury rates relative to short-term rates?
 - Yes, it can during financial crises (segmented markets)
 - Unlikely during normal times
 - The whole term structure is likely to move
 - The largest reaction may be for maturities not directly purchased by the Fed
- Can the Fed move the entire term structure of interest rates by buying Treasuries in a specific maturity segment?
 - Unlikely during a financial crisis
 - But the Fed can intervene in multiple segments ("Operation Twist")

• What is the quantitative significance of preferred habitat?

 $\Delta R_t = \alpha \times X_{1t} + \beta \times X_{2t} + \gamma \times X_{3t} + \dots + \psi \times X_{nt} + error_t$ where

 X_{1t} is purchases of assets (preferred habitat)

- X_{2t} is forward guidance
- X_{3t} is "Delphic" effects
- X_{nt} is the nth theory of how quantitative easing works

• What is the quantitative significance of preferred habitat?

Date	Event
November 25, 2008	the Fed announced purchases of \$100 billion in GSE debt and \$500 billion in MBS.
December 1, 2008	Chairman Bernanke stated that the Fed could purchase long-term Treasuries.
December 16, 2008	the FOMC announced possible purchases of long-term Treasuries
January 28, 2009	the FOMC announced it is ready to expand agency debt and MBS purchases, and to begin purchasing long-term Treasuries
March 18, 2009	the FOMC announced it will purchase \$300 billion in long-term Treasuries, along with an additional \$750 billion in agency MBS and \$100 billion in agency debt.

• What is the quantitative significance of preferred habitat?

Date	Chodorow-Reich (2014) [intraday window]	Krishnamurthy and Vissing-Jorgensen (2011) [2-day window]
November 25, 2008		-23 b.p.
December 1, 2008	-9.2 b.p.	-28 b.p.
December 16, 2008	-16.8 b.p.	-15 b.p.
January 28, 2009	3.1 b.p.	28 b.p.
March 18, 2009	-22.8 b.p.	-26 b.p.

Response of 5-year Treasury rate

• What is the quantitative significance of preferred habitat?

Date	Chodorow-Reich (2014) [intraday window]	Krishnamurthy and Vissing-Jorgensen (2011) [2-day window]
November 25, 2008		-23 b.p.
December 1, 2008	-9.2 b.p.	-28 b.p.
December 16, 2008	-16.8 b.p.	-15 b.p.
January 28, 2009	3.1 b.p.	28 b.p.
March 18, 2009	-22.8 b.p.	-26 b.p.
	-45.0 b.p.	-74 b.p.

Response of 5-year Treasury rate

Our estimate: a unit shock to bid-to-cover ratio at 5-year auction (\approx \$30 billion) changes the yield by 4.4 b.p.

• What is the quantitative significance of preferred habitat?

Date	Chodorow-Reich (2014) [intraday window]	Krishnamurthy and Vissing-Jorgensen (2011)
November 25 2008		-23 h n
December 1, 2008	-9.2 b.p.	-28 b.p.
December 16, 2008	-16.8 b.p.	-15 b.p.
January 28, 2009	3.1 b.p.	28 b.p.
March 18, 2009	-22.8 b.p.	-26 b.p.
	-45.0 b.p.	-74 b.p.

Response of 5-year Treasury rate

Our estimate: a unit shock to bid-to-cover ratio at 5-year auction (\approx \$30 billion) changes the yield by 4.4 b.p.

⇒ 4.4 b.p. × (\$300 billion / \$30 billion) ≈ 44 b.p. [29 b.p., 59 b.p.]

• What is the quantitative significance of preferred habitat?

Date	Chodorow-Reich (2014) [intraday window]	Krishnamurthy and Vissing-Jorgensen (2011)
N. 1 05 0000		
November 25, 2008		-23 b.p.
December 1, 2008	-9.2 b.p.	-28 b.p.
December 16, 2008	-16.8 b.p.	-15 b.p.
January 28, 2009	3.1 b.p.	28 b.p.
March 18, 2009	-22.8 b.p.	-26 b.p.
	-45.0 b.p.	-74 b.p.

Response of 5-year Treasury rate

Our estimate: a unit shock to bid-to-cover ratio at 5-year auction (\approx \$30 billion) changes the yield by 4.4 b.p.

⇒ 4.4 b.p. × (\$300 billion / \$30 billion) ≈ 44 b.p. [29 b.p., 59 b.p.]

A big part of the reaction may be rationalized within preferred habitat!

CONCLUDING REMARKS

- We use regular Treasury auctions to understand better QE

 Lots of data!
 - Nature of demand shocks for Treasuries allows us to rule out a number of alternative explanations (forward guidance, signaling, inflation expectations)
 - Strong local component of demand shocks when risk-bearing capacity is low.

CONCLUDING REMARKS

- We use regular Treasury auctions to understand better QE
 Lots of data!
 - Nature of demand shocks for Treasuries allows us to rule out a number of alternative explanations (forward guidance, signaling, inflation expectations)
 - Strong local component of demand shocks when risk-bearing capacity is low.
- Quantitative easing (QE) works but the main channel is likely via market segmentation (the **net** effect of other channels seems small).

CONCLUDING REMARKS

- We use regular Treasury auctions to understand better QE
 Lots of data!
 - Nature of demand shocks for Treasuries allows us to rule out a number of alternative explanations (forward guidance, signaling, inflation expectations)
 - Strong local component of demand shocks when risk-bearing capacity is low.
- Quantitative easing (QE) works but the main channel is likely via market segmentation (the **net** effect of other channels seems small).
- QE is an effective policy tool in crises and less likely to be so in normal times.

Vayanos and Vila (2009) model:

- Clientele with preferences over maturity space
- Arbitrageurs:
 - integrate maturity markets
 - are risk averse
 - maximize a mean-variance objective
- Three sources of uncertainty:
 - Instantaneous interest rate
 - Short-maturity demand factor (3 years)
 - Long-maturity demand factor (20 years)

ROMER AND ROMER (2017): FINANCIAL DISTRESS

- Regular auctions:
 - 2-, 5- and 7-year notes are auctioned monthly
 - 10- and 30-year notes and bonds are auctioned in Feb, May, Aug and Nov with "re-openings" in other 8 months.

- Bidders by "type of submission":
 - Primary dealers
 - Direct bidders
 - Indirect bidders

- Bidders by "type of submission":
 - Primary dealers
 - Direct bidders
 - Indirect bidders
- Bidders by "price"
 - Competitive
 - Non-competitive (includes the Fed)

- Bidders by "type of submission":
 - Primary dealers
 - Direct bidders
 - Indirect bidders
- Bidders by "price"
 - Competitive
 - Non-competitive (includes the Fed)
- Bidders by type:
 - Investment Funds;
 - Pension Funds and Insurance Companies;
 - Depository Institutions;
 - Individuals;
 - Primary Dealers and Brokers;
 - Foreign and International;
 - Federal Reserve System;
 - Other

Rate response $\beta^{(m)}$ by risk aversion and shock type

Specification: Use Bid-to-Cover shocks as instruments for $D_t^{(m')}$, the intraday surprise movement in Treasury futures price at maturity m'.

COMOVEMENT ACROSS MARKETS

 $y_t = \gamma + \phi D_t + error$

Equities

	Estimate (s.e.)	Ν	\mathbb{R}^2	Sample
SPY ETF	-0.020	871	0.005	1995-2015
IWM ETF	(0.018) -0.081*** (0.024)	706	0.034	2000-2015
$\mathbf{SP500}^{\dagger}$	(0.024) -0.072 (0.064)	871	0.004	1995-2015
Russell 2000 [†]	-0.169** (0.069)	871	0.013	1995-2015

 † = daily frequency for the dependent variable