Monetary Commitment and the Level of Public Debt

Stefano Gnocchi[∗] Luisa Lambertini[◊]

*Bank of Canada¹

 \diamond_{EPFL}

National Bank of Ukraine Kyiv, May 31st 2018

Gnocchi-Lambertini (BoC, EPFL) Monetary Commitment and Debt

¹The views expressed in this paper are those of the authors. No responsibility for them should be attributed to the Bank of Canada.

The benefits of inflation targeting

- Design of IT frameworks builds on insights from literature on monetary commitment
 - ▶ Inflation-output tradeoff shaped by inflation expectations
 - Credibility to affect expectations is positively valued

▶ Many features of IT frameworks serve as commitment devices

- Accountability for mandated objectives
- ▶ Transparency about decisions
- \Rightarrow Increase cost of reneging on early promises
- ▶ Benefits of IT in terms of inflation widely discussed, little on the relation between IT and government debt

The benefits of inflation targeting

 Design of IT frameworks builds on insights from literature on monetary commitment

- ▶ Inflation-output tradeoff shaped by inflation expectations
- Credibility to affect expectations is positively valued

▶ Many features of IT frameworks serve as commitment devices

- Accountability for mandated objectives
- Transparency about decisions
- $\Rightarrow\,$ Increase cost of reneging on early promises
- Benefits of IT in terms of inflation widely discussed, little on the relation between IT and government debt

The benefits of inflation targeting

 Design of IT frameworks builds on insights from literature on monetary commitment

- ▶ Inflation-output tradeoff shaped by inflation expectations
- ▶ Credibility to affect expectations is positively valued

▶ Many features of IT frameworks serve as commitment devices

- Accountability for mandated objectives
- ▶ Transparency about decisions
- \Rightarrow Increase cost of reneging on early promises
- Benefits of IT in terms of inflation widely discussed, little on the relation between IT and government debt

Interactions and asymmetries

▶ IT central banks and treasuries interact

- Government expenditure and taxes affect inflation
- ▶ The policy rate affects the financing cost of the treasury
- > Treasuries seem more vulnerable to time-consistency issues
 - Deviations from early promises can be justified with political turnover
 - Political nature of decisions hampers credibility of long-term fiscal plans

Interactions and asymmetries

▶ IT central banks and treasuries interact

- Government expenditure and taxes affect inflation
- ▶ The policy rate affects the financing cost of the treasury

▶ Treasuries seem more vulnerable to time-consistency issues

- Deviations from early promises can be justified with political turnover
- Political nature of decisions hampers credibility of long-term fiscal plans

▶ IT \Rightarrow Debt

- ▶ Effects of monetary commitment on debt accumulation
- Does IT mitigate fiscal time-consistency issues
- ▶ Welfare implications of IT if public debt taken into account
- ▶ Debt \Rightarrow IT
 - Could independence be questioned by treasuries?
 - ▶ The central bank and the government may disagree even if both benevolent
 - ▶ The mandate of instrument independent IT central banks finds legitimacy in the political arena

Simple monetary framework

- ▶ Baseline NK model where Pareto-efficiency is not implementable
 - Monopolistic competition and nominal price rigidities
 - Government spending is valued
 - Only distortionary taxes (linear in labor income) are available
 - Households save through nominal non-state-contingent bonds

• The model • Competitive equilibrium • Calibration

Sequence of events

- ► t = 0: MP announces targets $\{i_t^T(s^t, b_{-1}), \pi_t^T(s^t, b_{-1})\}_{t \ge 0}$
- $\blacktriangleright t \ge 0:$
 - 1. Shock occurs and observed by all agents
 - 2. Fiscal authority sets $G_r(s^r, b_{r-1})$ and $\tau_r(s^r, b_{r-1})$
 - 3. MP sets interest rate $1 + i_t \equiv (1 + i_t^T)(\pi_t/\pi_t^T)^{\phi_{\pi}}$

Strategies

$$\sigma_f^t = \{G_r(s^r, b_{r-1}), \tau_r(s^r, b_{r-1})\}_{r \ge t} \ \sigma_m^0 = \{i_t(s^t, b_{-1}, G_t, \tau_t)\}_{t \ge 0}$$

Equilibrium

1. For any σ_m^0 , σ_f^{0*} max U_t at any history (s^t, b_{t-1}) given σ_f^{t+1*} 2. σ_m^{0*} max U_0 for any b_{-1} , given ϕ_{π} and σ_f^{0*}

Solution

IT as off-equilibrium threat

- Fiscal policy is time-consistent and taken into account by the central bank when choosing targets
- At equilibrium $\pi_t = \pi_t^T$ and $i_t = i_t^T$
 - ⇒ The central bank raises the nominal interest rate by $(\pi_t/\pi_t^T)^{\phi_{\pi}}$ only if fiscal policy deviates from equilibrium
- $\blacktriangleright \ \phi_{\pi}$ captures central bank's independence in defending the inflation target

Fiscal time-inconsistency and monetary commitment

Future governments impose two externalities on their predecessors

- ▶ Phillips curve: inflation bias
 - Current inflation worsens past inflation-output tradeoff
- ▶ Aggregate demand: interest rate manipulation revisited
 - Current AD expansion lowers past demand of bonds
 - Negative externality in flex-price literature: interest-rate manipulation
 - With sticky prices, it can be positive or negative depending on the monetary policy response
- Monetary policy response generates a link between interest rate manipulation and the inflation bias

 $\blacktriangleright \Uparrow \Pi_t \Rightarrow \Uparrow i_t$

[▶] Generalized Euler Equation

▶ Debt → Welfare → Optimality condition

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ► Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

Debt • Welfare • Optimality condition

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - ▶ Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ► Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

• Debt (• Welfare (• Optimality condition)

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ▶ Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

• Debt • Welfare • Optimality condition

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ► Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

• Debt • Welfare • Optimality condition

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ▶ Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

• Debt • Welfare • Optimality condition

- Inflation has a budgetary cost if b > 0 and $\phi_{\pi} > 1/\beta$
- ▶ The optimal steady-state level of debt eliminates net gains from surprise inflation
 - Accumulate debt to the point where the budgetary cost of inflation equalizes its benefits
 - Larger ϕ_{π} increases the budgetary cost of inflation
 - ▶ Less need to accumulate debt to prevent future inflation
- ► Aggressive defense of the inflation target reduces steady-state debt and increases steady-state welfare

Feasibility of IT

Welfare gains from changing ϕ_{π} taking the transition into account • Welfare

- Optimal level of ϕ_{π} balances off the long run benefits of low debt and the short run gains of deficit financed fiscal expansions
- Assume fall in ϕ_{π}
 - ▶ Steady-state costs: debt increases in the long-run
 - ▶ Short-run benefits: economic boom while increasing debt
- Optimal to weaken the inflation response if debt is too high or if MP is not accommodative enough during fiscal consolidations

Feasibility of IT

Welfare gains from changing ϕ_{π} taking the transition into account • Welfare

- Optimal level of ϕ_{π} balances off the long run benefits of low debt and the short run gains of deficit financed fiscal expansions
- Assume fall in ϕ_{π}
 - ▶ Steady-state costs: debt increases in the long-run
 - ▶ Short-run benefits: economic boom while increasing debt
- Optimal to weaken the inflation response if debt is too high or if MP is not accommodative enough during fiscal consolidations

Feasibility of IT

Welfare gains from changing ϕ_{π} taking the transition into account • Welfare

- Optimal level of ϕ_{π} balances off the long run benefits of low debt and the short run gains of deficit financed fiscal expansions
- Assume fall in ϕ_{π}
 - ▶ Steady-state costs: debt increases in the long-run
 - ▶ Short-run benefits: economic boom while increasing debt
- Optimal to weaken the inflation response if debt is too high or if MP is not accommodative enough during fiscal consolidations

Conclusion

- Monetary policy affects debt accumulation
- ▶ More aggressive defense of the inflation target reduces debt
- ▶ Monetary policy has first-order effects on welfare
- If monetary policy is not chosen wisely, central bank's independence may be questioned

► HOUSEHOLDS

- Representative household consumes infinitely many varieties of market goods, public goods and leisure
- Income is spent on market goods or saved through nominal non-state contingent bonds
- ▶ Labor income is taxed linearly

▶ Households

- ► FIRMS
 - ▶ Infinitely many firms, each producing a differentiated variety
 - ▶ Firms rent labor services from households
 - Quadratic adjustment costs to prices

Firms

▶ Game

Households

► Objective

$$U_{0} = E_{0} \sum_{t=0}^{\infty} \beta^{t} \left[(1-\chi) \ln C_{t} + \chi \ln G_{t} - \frac{N_{t}^{1+\varphi}}{1+\varphi} \right]$$
(1)
$$C_{t} = \left[\int_{0}^{1} C_{t}(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{\eta}{\eta-1}}$$
(2)
$$G_{t} = \left[\int_{0}^{1} G_{t}(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{\eta}{\eta-1}}$$
(3)

Budget constraints

$$\int_0^1 P_t(j)C_t(j) \, dj + \frac{B_t}{1+i_t} = W_t N_t(1-\tau_t) + B_{t-1} \tag{4}$$

▲ Back

Gnocchi-Lambertini (BoC, EPFL) Monetary Commitment and Debt

Firms

► Technology

$$Y_t(j) = z_t N_t(j) \tag{5}$$

▶ Demand

$$Y_t(j) = \left(\frac{P_t(j)}{P_t}\right)^{-\eta} Y_t^d \tag{6}$$

► Profits

$$E_{t} \left\{ \sum_{s=0}^{\infty} Q_{t,t+s} \left[P_{t+s}(j) Y_{t+s}(j) - W_{t+s} N_{t+s}(j) - P_{t+s} \frac{\gamma}{2} \left(\frac{P_{t+s}(j)}{P_{t+s-1}(j)} - 1 \right)^{2} \right] \right\}$$
(7)

▲ Back

Competitive equilibrium

- Exogenous events: $s^t \equiv (z_0, ..., z_t)$
- Policies: $p_t \equiv (i_t, G_t, \tau_t)$
- ► Decisions and prices: $x_t(s^t, b_{t-1}) \equiv (C_t, N_t, b_t, mc_t, \pi_t)$
- $\mathcal{A}_t = \{x_r(s^r, b_{t-1}), p_r\}_{r \ge t}$ is a CCE if it satisfies

$$z_t N_t - C_t - G_t - \frac{\gamma}{2} (\pi_t - 1)^2 = 0, \quad \frac{1}{C_t (1 + i_t)} - \beta E_t \frac{1}{C_{t+1} \pi_{t+1}} = 0,$$
$$\frac{N_t^{\varphi} C_t}{1 - \chi} - w_t (1 - \tau_t) = 0, \quad \frac{b_t}{1 + i_t} + \tau_t m c_t z_t N_t = \frac{b_{t-1}}{\pi_t} + G_t,$$

$$\beta E_t \frac{C_t \pi_{t+1}(\pi_{t+1} - 1)}{C_{t+1}} + \frac{\eta}{\gamma} z_t N_t \left(mc_t - \frac{\eta - 1}{\eta} \right) - \pi_t(\pi_t - 1) = 0,$$
$$\lim_{T \to \infty} E_t \left\{ \beta^{T+1} \frac{b_{t+T}}{C_{t+T+1} \pi_{t+T+1}} \right\} = 0.$$

ame) (> Time-inconsistency issues)

Solution: Primal approach

▲ Back

- ▶ ϕ_{π} is restricted so that σ_f , σ_m and equations defining CEE yield a locally unique solution
- Any competitive equilibrium can be implemented by choosing σ_f and σ_m jointly. For any ϕ_{π} , σ_m can be chosen to implement any CCE consistent with fiscal optimality
- ▶ We can solve policy problems by primal approach: (i) find the optimal allocation; (ii) construct strategies implementing the desired allocation

Solution: Markov-perfect fiscal policy

▲ Back

$$U_t(s^t, b_{t-1}) = E_t \sum_{r=t}^{\infty} \beta^r \left[(1-\chi) \ln C_r + \chi \ln G_r - \frac{N_r^{1+\varphi}}{1+\varphi} \right]$$

- ▶ $\bar{\sigma}_f$ is Markov-perfect if any of its continuations $\bar{\sigma}_f^t$ maximizes U_t given σ_m and continuation $\bar{\sigma}_f^{t+1}$
- We compute $\bar{\sigma}^f$ by using primal approach
 - ▶ Find $\bar{\mathcal{A}}_t$ maximizing U_t given b_{t-1} , σ_m and $\bar{\mathcal{A}}_{t+1}$
 - ► Take $G_r(s^r, b_{r-1}), \tau_r(s^r, b_{r-1})$ from $\bar{\mathcal{A}}_r, r \ge t$ and form $\bar{\sigma}_f^t$

Solution: Monetary policy

A Back State State

• We compute $\bar{\sigma}_0^m$ by using primal approach

- Find $\overline{\mathcal{A}}_0$ maximizing U_0 given b_{-1} , and the optimality condition of the fiscal authority
- Choose $i_t^T = i_t, \, \pi_t^{\overline{T}} = \pi_t$ from continuations $\overline{\mathcal{A}}_t$

Forward looking constraints

$$k_t \equiv -E_t \underbrace{\left\{\frac{\beta}{C_{t+1}\pi_{t+1}}\right\}}_{\text{Aggregate demand}}; \quad f_t \equiv E_t \underbrace{\left\{\frac{\beta C_t \pi_{t+1}(\pi_{t+1}-1)}{C_{t+1}}\right\}}_{\text{Inflation-output tradeoff}}$$

- ▶ Current allocation is affected by
 - ▶ MP via interest rate through the Euler equation
 - ▶ Future MP and FP via expected inflation and consumption through the Euler equation and the Phillips curve
- $\blacktriangleright \uparrow k_t \implies \uparrow C_t$ given MP instrument
 - \Rightarrow boost aggregate demand
- $\blacktriangleright \uparrow f_t \implies \uparrow \pi_t$ given output
 - \implies worsen inflation-output tradeoff
- FP affects k_t and f_t through debt accumulation

Forward looking constraints

$$k_t \equiv -E_t \underbrace{\left\{ \frac{\beta}{C_{t+1}\pi_{t+1}} \right\}}_{\text{Aggregate demand}}; \quad f_t \equiv E_t \underbrace{\left\{ \frac{\beta C_t \pi_{t+1}(\pi_{t+1}-1)}{C_{t+1}} \right\}}_{\text{Inflation-output tradeoff}}$$

- ▶ Current allocation is affected by
 - ▶ MP via interest rate through the Euler equation
 - ▶ Future MP and FP via expected inflation and consumption through the Euler equation and the Phillips curve
- $\blacktriangleright \uparrow k_t \implies \uparrow C_t$ given MP instrument
 - \implies boost aggregate demand
- $\blacktriangleright \uparrow f_t \implies \uparrow \pi_t$ given output
 - \Rightarrow worsen inflation-output tradeoff
- FP affects k_t and f_t through debt accumulation

Forward looking constraints

$$k_t \equiv -E_t \underbrace{\left\{ \frac{\beta}{C_{t+1}\pi_{t+1}} \right\}}_{\text{Aggregate demand}}; \quad f_t \equiv E_t \underbrace{\left\{ \frac{\beta C_t \pi_{t+1}(\pi_{t+1}-1)}{C_{t+1}} \right\}}_{\text{Inflation-output tradeoff}}$$

- Current allocation is affected by
 - ▶ MP via interest rate through the Euler equation
 - ▶ Future MP and FP via expected inflation and consumption through the Euler equation and the Phillips curve

$$\uparrow k_t \implies \uparrow C_t \text{ given MP instrument}$$

- \implies boost aggregate demand
- $\blacktriangleright \uparrow f_t \implies \uparrow \pi_t$ given output
 - \implies worsen inflation-output tradeoff
- FP affects k_t and f_t through debt accumulation

Forward looking constraints

$$k_t \equiv -E_t \underbrace{\left\{ \frac{\beta}{C_{t+1}\pi_{t+1}} \right\}}_{\text{Aggregate demand}}; \quad f_t \equiv E_t \underbrace{\left\{ \frac{\beta C_t \pi_{t+1}(\pi_{t+1}-1)}{C_{t+1}} \right\}}_{\text{Inflation-output tradeoff}}$$

- ▶ Current allocation is affected by
 - ▶ MP via interest rate through the Euler equation
 - ▶ Future MP and FP via expected inflation and consumption through the Euler equation and the Phillips curve

$$\uparrow k_t \implies \uparrow C_t \text{ given MP instrument}$$

- \implies boost aggregate demand
- $\blacktriangleright \uparrow f_t \implies \uparrow \pi_t$ given output
 - \implies worsen inflation-output tradeoff
- ▶ FP affects k_t and f_t through debt accumulation

▲ Back

Generalized Euler equation

- Utility value of boosting AD through debt accumulation: λ_b . Positive or negative?
- Optimality w.r.t. debt at the steady state • $\frac{\partial f_t}{\partial b_t} > 0$
 - $\blacktriangleright \uparrow b$ boost AD and worsen inflation-output trade
 - $\lambda_b > 0 \implies$ expanding AD has positive value
- $\blacktriangleright \ \frac{\partial f_t}{\partial b_t} < 0$
 - $\blacktriangleright \uparrow b$ boost AD and improve inflation-output tradeoff
 - $\lambda_b < 0 \implies$ expanding AD has negative value

Generalized Euler equation

- Utility value of boosting AD through debt accumulation: λ_b . Positive or negative?
- Optimality w.r.t. debt at the steady state

Generalized Euler equation

- Utility value of boosting AD through debt accumulation: λ_b . Positive or negative?
- Optimality w.r.t. debt at the steady state

- $\blacktriangleright \ \frac{\partial f_t}{\partial b_t} > 0$
 - $\blacktriangleright \uparrow b$ boost AD and worsen inflation-output tradeoff
 - $\lambda_b > 0 \implies$ expanding AD has positive value
- $\blacktriangleright \ \frac{\partial f_t}{\partial b_t} < 0$

• $\uparrow b$ boost AD and improve inflation-output tradeoff • $\lambda_b < 0 \implies$ expanding AD has negative value

Generalized Euler equation

- Utility value of boosting AD through debt accumulation: λ_b . Positive or negative?
- Optimality w.r.t. debt at the steady state

 $\lambda_b < 0 \implies$ expanding AD has negative value

▲ Back

Back

Table: Benchmark calibration

Description	Parameter	Value
Weight of G in utility	χ	0.15
Weight of C in utility	$1-\chi$	0.85
Elast. subst. goods	η	11
Price stickiness	γ	20
Serial corr. tech.	$ ho_z$	0
Discount factor	β	0.99
Frisch elasticity	$arphi^{-1}$	1

Steady-state debt

▲ Back

▶ General

$$b = \frac{\gamma \pi^2}{\eta(\beta \phi_{\pi} - 1)} \left[\left(1 - \frac{\chi}{G\lambda^s} \right) \eta(\pi - 1) + (2\pi - 1) \right]$$

$$-\beta \phi_{\pi} \left(\frac{\frac{\partial \Pi}{\partial b_t} C(2\pi - 1) - \frac{\partial \mathcal{C}}{\partial b_t} \pi(\pi - 1)}{\frac{\partial \Pi}{\partial b_t} C + \frac{\partial \mathcal{C}}{\partial b_t} \pi} \right) \right]$$
(8)

▶ Open-loop

$$b = -\frac{\gamma \pi^2}{\eta} \left[\left(1 - \frac{\chi}{G\lambda^s} \right) \eta(\pi - 1) + (2\pi - 1) \right]$$
(9)

• Taylor with $\pi^* = 1$

$$b = \frac{\gamma}{\eta(\beta\phi_{\pi} - 1)} \left(1 - \beta\phi_{\pi} \frac{\frac{\partial\Pi}{\partial b_{t}}C}{\frac{\partial\Pi}{\partial b_{t}}C + \frac{\partial\mathcal{C}}{\partial b_{t}}} \right)$$
(10)

Gnocchi-Lambertini (BoC, EPFL) Monetary Commitment and Debt

Steady-state results

▲ Back

Table: Steady state

	Open-loop	Taylor	Closed-loop
		$\phi_{\pi} = 1.5$	$\phi_{\pi} = 1.5$
		$\pi^* = 1$	
Variable		Value	
C	0.7486	0.7227	0.7222
G	0.1366	0.1227	0.1300
N	0.8853	0.8454	0.8522
b/(4Y)	-62.13%	112.77%	81.59%
τ	0.1423	0.2093	0.2036
π	0.9973	1	1.0021

Steady-state results

▲ Back

Table: Steady state

	Open-loop	Taylor	Closed-loop
		$\phi_{\pi} = 1.5$	$\phi_{\pi} = 1.5$
		$\pi^* = 1$	
Variable		Value	
C	0.7486	0.7227	0.7222
G	0.1366	0.1227	0.1300
N	0.8853	0.8454	0.8522
b/(4Y)	-62.13%	112.77%	81.59%
τ	0.1423	0.2093	0.2036
π	0.9973	1	1.0021

Debt and ϕ_{π}

• Back

25 / 27

Welfare and ϕ_{π}

Debt (\bullet Optimal ϕ_{π}

Gnocchi-Lambertini (BoC, EPFL) Monetary Commitment and Debt

Optimality w.r.t. inflation at the steady state

► First-order condition

Optimality w.r.t. inflation at the steady state

▶ First-order condition

 $\ \ \, \uparrow \pi \implies \uparrow \text{ debt refinancing cost}$

- λ^s value of relaxing the government budget constraint
- Positive debt gives the treasury an incentive to deflate

Optimality w.r.t. inflation at the steady state

► First-order condition

$$\underbrace{-\frac{\lambda^s b}{\pi^2} \left(\beta \phi_{\pi} - 1\right)}_{\text{budget cost}} - \underbrace{\lambda^f \gamma(\pi - 1)}_{\text{resource cost}} - \underbrace{\lambda^p(2\pi - 1)}_{\text{output gain}} \underbrace{-\beta \phi_{\pi} \frac{\lambda^b}{C\pi^2}}_{\text{AD effect}} = 0$$

$$\uparrow \pi \implies \downarrow AD \implies \uparrow B$$

- ▶ λ^b value of boosting aggregate demand
- $\lambda_b > 0$ if $\uparrow B \implies \uparrow \prod_{t+1}$: utility falls, additional cost of inflation
- ▶ Under the optimal rule λ_b is positive; it is negative under a Taylor rule
- ▶ Optimal rule makes inflation more costly for the fiscal policy maker

▲ Back

Optimality w.r.t. inflation at the steady state

► First-order condition

$$\underbrace{-\frac{\lambda^s b}{\pi^2} \left(\beta \phi_{\pi} - 1\right)}_{\text{budget cost}} - \underbrace{\lambda^f \gamma(\pi - 1)}_{\text{resource cost}} - \underbrace{\lambda^p(2\pi - 1)}_{\text{output gain}} \underbrace{-\beta \phi_{\pi} \frac{\lambda^b}{C\pi^2}}_{\text{AD effect}} = 0$$

$$\uparrow \pi \implies \downarrow AD \implies \uparrow B$$

- ▶ λ^b value of boosting aggregate demand
- $\lambda_b > 0$ if $\uparrow B \implies \uparrow \Pi_{t+1}$: utility falls, additional cost of inflation
- \blacktriangleright Under the optimal rule λ_b is positive; it is negative under a Taylor rule
- Optimal rule makes inflation more costly for the fiscal policy maker

$\P{} Back$

Optimality w.r.t. inflation at the steady state

► First-order condition

$$\underbrace{-\frac{\lambda^s b}{\pi^2} \left(\beta \phi_{\pi} - 1\right)}_{\text{budget cost}} - \underbrace{\lambda^f \gamma(\pi - 1)}_{\text{resource cost}} - \underbrace{\lambda^p(2\pi - 1)}_{\text{output gain}} \underbrace{-\beta \phi_{\pi} \frac{\lambda^b}{C\pi^2}}_{\text{AD effect}} = 0$$

$$\uparrow \pi \implies \downarrow AD \implies \uparrow B$$

- ▶ λ^b value of boosting aggregate demand
- $\lambda_b > 0$ if $\uparrow B \implies \uparrow \prod_{t+1}$: utility falls, additional cost of inflation
- \blacktriangleright Under the optimal rule λ_b is positive; it is negative under a Taylor rule
- ▶ Optimal rule makes inflation more costly for the fiscal policy maker