Optimal Inflation Target in Ukraine: A Model-Based Perspective

Mishel Ghassibe
University of Oxford
National Bank of Ukraine

Inflation Targeting in Emerging Economies – National Bank of Ukraine
November 26th 2021

Any views expressed are solely those of the author and cannot be taken to represent those of the National Bank of Ukraine.
Inflation Targeting across Countries

Why target *positive* inflation?

- Sticky prices, *unconstrained* central bank rate: optimal target is zero

Many developed countries target inflation (just below) 2% – is this consistent with the trade-off? For the US, models say yes! (Coibion, Gorodnichenko and Wieland, 2012)
Why target positive inflation?

- Sticky prices, **unconstrained** central bank rate: optimal target is **zero**

- Sticky prices, central bank rate constrained by lower bound, positive target comes from **trade-off**:
 - The productive distortions caused by sticky prices and their dispersion (↑ with π)
 - The probability of the nominal interest rate reaching the lower bound (↓ with π)
Why target *positive* inflation?

- Sticky prices, **unconstrained** central bank rate: optimal target is **zero**

- Sticky prices, central bank rate constrained by lower bound, positive target comes from **trade-off**:

 - The productive distortions caused by sticky prices and their dispersion (↑ with π)

 - The probability of the nominal interest rate reaching the lower bound (↓ with π)

- Many developed countries target inflation (just below) 2% – is this consistent with the trade-off?
Why target positive inflation?

- Sticky prices, unconstrained central bank rate: optimal target is zero

- Sticky prices, central bank rate constrained by lower bound, positive target comes from trade-off:
 - The productive distortions caused by sticky prices and their dispersion (\uparrow with π)
 - The probability of the nominal interest rate reaching the lower bound (\downarrow with π)

- Many developed countries target inflation (just below) 2% – is this consistent with the trade-off?

- For the US, models say yes! (Coibion, Gorodnichenko and Wieland, 2012)
What about optimal target for Ukraine?

- Probability of hitting the lower bound is crucially influenced by:
 - Type and volatility of shocks driving the economy
 - Type of interest rate rule followed by the central bank

For the US, Coibion et al. (2012) show that salient features of the US economy are well captured by:

- Shocks to technology, risk premium, government spending and markups
- An inertial interest rate rule over inflation and output

What about Ukraine? Given the high degree of openness, foreign shocks are likely to be important.
What about optimal target for Ukraine?

- Probability of hitting the lower bound is crucially influenced by:
 - Type and volatility of shocks driving the economy
 - Type of interest rate rule followed by the central bank

- For the US, Coibion et al. (2012) show that salient features of the US economy are well captured by
 - Shocks to technology, risk premium, government spending and markups
 - An inertial interest rate rule over inflation and output
What about optimal target for Ukraine?

- Probability of hitting the lower bound is crucially influenced by:
 - Type and volatility of shocks driving the economy
 - Type of interest rate rule followed by the central bank

- For the US, Coibion et al. (2012) show that salient features of the US economy are well captured by
 - Shocks to technology, risk premium, government spending and markups
 - An inertial interest rate rule over inflation and output

- What about Ukraine? Given the high degree of openness, foreign shocks are likely to be important
A Small Open Economy NK Model
Households

Maximize $E_t \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{N_t^{1+\varphi}}{1+\varphi} \right]$ subject to the budget constraint:

$$P_t C_t + D_t + \varepsilon_t D^*_t \leq W_t N_t + D_{t-1} (1 + i_{t-1}) q_{t-1} + \varepsilon_t D^*_{t-1} (1 + i^*_{t-1}) + \Pi_t - T_t, \quad \forall t$$
Households

- Maximize $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{N_t^{1+\varphi}}{1+\varphi} \right]$ subject to the budget constraint:

$$P_tC_t + D_t + \varepsilon_tD_t^* \leq WtN_t + D_{t-1}(1 + i_{t-1})q_{t-1} + \varepsilon_tD_{t-1}^*(1 + i_{t-1}^*) + \Pi_t - T_t, \quad \forall t$$

where $\ln q_t = \rho_q \ln q_{t-1} + \epsilon_t^q$ is exogenously given *risk premium*
Households

- Maximize $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{N_t^{1+\varphi}}{1+\varphi} \right]$ subject to the budget constraint:

$$P_t C_t + D_t + \varepsilon_t D^*_t \leq W_t N_t + D_{t-1}(1 + i_{t-1}) q_{t-1} + \varepsilon_t D^*_{t-1}(1 + i^*_{t-1}) + \Pi_t - T_t, \quad \forall t$$

where $\ln q_t = \rho_q \ln q_{t-1} + \epsilon^q_t$ is exogenously given risk premium

- Aggregate household consumption contains both domestically produced and imported goods:

$$C_t = \left[(1 - \alpha)^{1/\eta} C_{H,t}^{\eta-1} + \alpha^{1/\eta} C_{F,t}^{\eta-1} \right]^{\eta/(\eta-1)}$$
Households

- Maximize $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{N_t^{1+\varphi}}{1+\varphi} \right]$ subject to the budget constraint:

 $$P_t C_t + D_t + \varepsilon_t D_t^* \leq W_t N_t + D_{t-1} (1 + i_{t-1}) q_{t-1} + \varepsilon_t D_{t-1}^* (1 + i_{t-1}^*) + \Pi_t - T_t, \quad \forall t$$

 where $\ln q_t = \rho_q \ln q_{t-1} + \epsilon_t^q$ is exogenously given risk premium

- Aggregate household consumption contains both domestically produced and imported goods:

 $$C_t = \left[(1 - \alpha)^{1/\eta} C_{H,t}^{\frac{\eta-1}{\eta}} + \alpha^{1/\eta} C_{F,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- Delivers the following demand and pricing conditions:

 $$C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} C_t, \quad C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t} \right)^{-\eta} C_t$$
Households

- Maximize $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{N_t^{1+\phi}}{1+\phi} \right]$ subject to the budget constraint:

$$P_tC_t + D_t + \varepsilon_t D_t^* \leq W_t N_t + D_{t-1} (1 + i_{t-1}) q_{t-1} + \varepsilon_t D_{t-1}^* (1 + i_{t-1}^*) + \Pi_t - T_t, \quad \forall t$$

where $\ln q_t = \rho_q \ln q_{t-1} + \epsilon^q_t$ is exogenously given risk premium

- Aggregate household consumption contains both domestically produced and imported goods:

$$C_t = \left[(1 - \alpha)^{1/\eta} C_{H,t}^{\eta-1} + \alpha^{1/\eta} C_{F,t}^{\eta-1} \right]^{\eta/(\eta-1)}$$

- Delivers the following demand and pricing conditions:

$$C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} C_t, \quad C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t} \right)^{-\eta} C_t$$

- CPI: $P_t = \left[(1 - \alpha) P_{H,t}^{1-\eta} + \alpha P_{F,t}^{1-\eta} \right]^{1/(1-\eta)}$
Firms

- Two types of firms: producers and importers
Firms

- Two types of firms: producers and importers

- Producers:

- Importers:
 - Buy imported goods at $\epsilon_t P^* F_t$, sell them to households at price $P F_t$.
 - If importers perfectly competitive, law of one price holds: $P F_t = \epsilon_t P^* F_t$.
 - If importers monopolistically competitive, face a Calvo lottery,
Firms

- Two types of firms: producers and importers

- Producers:
 - $Y_t(i) = A_t N_t(i)$, where $\ln A_t = \rho_A \ln A_{t-1} + \epsilon^A_t$ is exogenously given technology process

- Importers:
 - Buy imported goods at $\epsilon_t P^*_F$, sell them to households at price P^*_F, t
 - If importers perfectly competitive, law of one price holds: $P^*_F = \epsilon_t P^*_F$
 - If importers monopolistically competitive, face a Calvo lottery, which can be calibrated to match the empirical degree of exchange rate pass-through
Firms

- Two types of firms: producers and importers

- Producers:
 - $Y_t(i) = A_t N_t(i)$, where $\ln A_t = \rho_A \ln A_{t-1} + \epsilon_t^A$ is exogenously given technology process
 - Common marginal cost function for every firm: $MC_t = \frac{W_t}{A_t} \tau_t$, where $\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_t^\tau$ is exogenously given cost shock process

- Importers:
 - Buy imported goods at $\epsilon_t P^*_F$, sell them to households at price P_F, t
 - If importers perfectly competitive, law of one price holds:
 - $P_F, t = \epsilon_t P^*_F, t$
 - If importers monopolistically competitive, face a Calvo lottery, which can be calibrated to match the empirical degree of exchange rate pass-through
Firms

- Two types of firms: producers and importers

- Producers:
 - $Y_t(i) = A_t N_t(i)$, where $\ln A_t = \rho_A \ln A_{t-1} + \epsilon_t^A$ is exogenously given technology process
 - Common marginal cost function for every firm: $MC_t = \frac{W_t}{A_t} \tau_t$, where $\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_t^\tau$ is exogenously given cost shock process
 - Standard Calvo (1983) pricing (probability of non-adjustment θ)

- Importers:
 - Buy imported goods at $\epsilon_t P^*_F$, sell them to households at price P_F, t
 - If importers perfectly competitive, law of one price holds: $P_F, t = \epsilon_t P^*_F, t$
 - If importers monopolistically competitive, face a Calvo lottery, which can be calibrated to match the empirical degree of exchange rate pass-through
Firms

- Two types of firms: producers and importers

Producers:

- $Y_t(i) = A_t N_t(i)$, where $\ln A_t = \rho_A \ln A_{t-1} + \epsilon_A^t$ is exogenously given technology process

- Common marginal cost function for every firm: $MC_t = \frac{W_t}{A_t} \tau_t$, where $\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_{\tau}^t$ is exogenously given cost shock process

- Standard Calvo (1983) pricing (probability of non-adjustment θ)

Importers:

- Buy imported goods at $\varepsilon_t P^*_F$, sell them to households at price P_F, t

- If importers perfectly competitive, law of one price holds: $P_F, t = \varepsilon_t P^*_F, t$

- If importers monopolistically competitive, face a Calvo lottery, which can be calibrated to match the empirical degree of exchange rate pass-through
Firms

- Two types of firms: producers and importers

Producers:

- \(Y_t(i) = A_t N_t(i), \) where \(\ln A_t = \rho_A \ln A_{t-1} + \epsilon_t^A \) is exogenously given technology process

- Common marginal cost function for every firm: \(MC_t = \frac{W_t}{A_t} \tau_t, \) where \(\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_t^\tau \) is exogenously given cost shock process

- Standard Calvo (1983) pricing (probability of non-adjustment \(\theta \))

Importers:

- Buy imported goods at \(\epsilon_t P_{F,t}^*, \) sell them to households at price \(P_{F,t} \)}
Firms

- Two types of firms: producers and importers

- Producers:
 - \(Y_t(i) = A_t N_t(i) \), where \(\ln A_t = \rho_A \ln A_{t-1} + \epsilon_t^A \) is exogenously given technology process
 - Common marginal cost function for every firm: \(MC_t = \frac{W_t}{A_t} \tau_t \), where \(\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_t^\tau \) is exogenously given cost shock process
 - Standard Calvo (1983) pricing (probability of non-adjustment \(\theta \))

- Importers:
 - Buy imported goods at \(\epsilon_t P_{F,t}^* \), sell them to households at price \(P_{F,t} \)
 - If importers perfectly competitive, law of one price holds: \(P_{F,t} = \epsilon_t P_{F,t}^* \)
Firms

- Two types of firms: producers and importers

 Producers:
 - \(Y_t(i) = A_t N_t(i) \), where \(\ln A_t = \rho_A \ln A_{t-1} + \epsilon_t^A \) is exogenously given technology process
 - Common marginal cost function for every firm: \(MC_t = \frac{W_t}{A_t} \tau_t \), where \(\ln \tau_t = \rho_A \ln \tau_{t-1} + \epsilon_t^\tau \) is exogenously given cost shock process
 - Standard Calvo (1983) pricing (probability of non-adjustment \(\theta \))

 Importers:
 - Buy imported goods at \(\varepsilon_t P_{F,t}^* \), sell them to households at price \(P_{F,t} \)
 - If importers perfectly competitive, law of one price holds: \(P_{F,t} = \varepsilon_t P_{F,t}^* \)
 - If importers monopolistically competitive, face a Calvo lottery, which can be calibrated to match the empirical degree of exchange rate pass-through
Government: central bank and fiscal authority

- Interest rate rule:

\[\tilde{i}_t = \rho_{i1}\tilde{i}_{t-1} + \rho_{i2}\tilde{i}_{t-2} + (1 - \rho_{i1} - \rho_{i2})(\tilde{i} + \phi_\pi(\pi_t - \bar{\pi}) + \phi_\gamma(y_t - \bar{y})) + \epsilon^i_t \]

where \(\epsilon^i_t \) is a monetary shock
Government: central bank and fiscal authority

- Interest rate rule:

\[\tilde{i}_t = \rho_{i1} \tilde{i}_{t-1} + \rho_{i2} \tilde{i}_{t-2} + (1 - \rho_{i1} - \rho_{i2})(\tilde{i} + \phi_\pi (\pi_t - \pi) + \phi_y (y_t - \bar{y})) + \epsilon_t^i \]

where \(\epsilon_t^i \) is a monetary shock

- Effective lower bound:

\[i_t = \max(\iota, \tilde{i}_t) \]
Government: central bank and fiscal authority

- **Interest rate rule:**

\[
\tilde{i}_t = \rho_1 \tilde{i}_{t-1} + \rho_2 \tilde{i}_{t-2} + (1 - \rho_1 - \rho_2) \left(\tilde{i} + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{y}) \right) + \epsilon^i_t
\]

where \(\epsilon^i_t \) is a monetary shock

- **Effective lower bound:**

\[
i_t = \max(\iota, \tilde{i}_t)
\]

- **The fiscal authority collects lump-sum taxes to finance its consumption \(G_t \):**

\[
C^H_t + C^{*,H}_t + G_t = Y_t
\]
Government: central bank and fiscal authority

- Interest rate rule:

\[\hat{i}_t = \rho_{i1}\hat{i}_{t-1} + \rho_{i2}\hat{i}_{t-2} + (1 - \rho_{i1} - \rho_{i2})(\hat{i} + \phi_\pi(\pi_t - \bar{\pi}) + \phi_y(y_t - \bar{y})) + \epsilon^i_t \]

where \(\epsilon^i_t \) is a monetary shock

- Effective lower bound:

\[i_t = \max(\nu, \hat{i}_t) \]

- The fiscal authority collects lump-sum taxes to finance its consumption \(G_t \):

\[C^H_t + C^{*,H}_t + G_t = Y_t \]

where \(\ln G_t = \rho_G \ln G_{t-1} + \epsilon^G_t \) is exogenous government consumption
Calibration strategy
Calibration strategy: elasticity of import substitution

- A parameter not readily available (up to my knowledge) is the elasticity of substitution across home and foreign consumption goods (η)
Calibration strategy: elasticity of import substitution

- A parameter not readily available (up to my knowledge) is the elasticity of substitution across home and foreign consumption goods (η)

- In order to estimate it, recall the following equilibrium relationship:

$$C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t} \right)^{-\eta} C_t$$
Calibration strategy: elasticity of import substitution

- A parameter not readily available (up to my knowledge) is the elasticity of substitution across home and foreign consumption goods (η)

- In order to estimate it, recall the following equilibrium relationship:

$$\ln \frac{P_{F,t} C_{F,t}}{P_t C_t} = \ln \alpha + (1 - \eta) \ln \left(\frac{P_{F,t}}{P_t} \right)$$
Calibration strategy: elasticity of import substitution

- A parameter not readily available (up to my knowledge) is the elasticity of substitution across home and foreign consumption goods (η)

- In order to estimate it, recall the following equilibrium relationship:

$$\ln \frac{P_{F,t}C_{F,t}}{P_tC_t} = \ln \alpha + (1 - \eta) \ln \left(\frac{P_{F,t}}{P_t} \right)$$

- Direct OLS estimation (can also use 2SLS):

$$\ln \frac{P_{F,t}C_{F,t}}{P_tC_t} = -0.33^{***} + 0.50^{***} \times \ln \left(\frac{P_{F,t}}{P_t} \right)$$
Calibration strategy: elasticity of import substitution

- A parameter not readily available (up to my knowledge) is the elasticity of substitution across home and foreign consumption goods (η)

- In order to estimate it, recall the following equilibrium relationship:

\[\ln \frac{P_{F,t}C_{F,t}}{P_tC_t} = \ln \alpha + (1 - \eta) \ln \left(\frac{P_{F,t}}{P_t} \right) \]

- Direct OLS estimation (can also use 2SLS):

\[\ln \frac{P_{F,t}C_{F,t}}{P_tC_t} = -0.33^{***} + 0.50^{***} \times \ln \left(\frac{P_{F,t}}{P_t} \right) \]

- Implies $\eta = 0.50$
Calibration strategy: foreign output and inflation

- Approximate Foreign country by the EU
 - Use cyclical component of total EU GDP to estimate foreign output AR(1) process:
 \[
 \hat{Y}_t^* = 0.89^{***} \hat{Y}_t^* , \quad \sigma_{Y^*} = 0.003
 \]

- Similarly, estimate a process for foreign inflation:
 \[
 \hat{\pi}_t^* = 0.51^{***} \hat{\pi}_t^* , \quad \sigma_{\pi^*} = 0.007
 \]
Calibration strategy: interest rate rule

- Use Ukrainian quarterly macro data (2016Q1-2020Q4) to directly estimate the interest rate rule for Ukraine

\[
\tilde{i}_t = 1.16 \times \tilde{i}_{t-1} - 0.32 \times \tilde{i}_{t-2} + 0.23 \times (\pi_t - \bar{\pi}_t) + 0.02 \times (y_t - \bar{y})
\]

\[
\phi_\pi = 1.45, \phi_y = 0.14 \text{ and } \sigma_e = 0.002
\]
Calibration strategy: interest rate rule

- Use Ukrainian quarterly macro data (2016Q1-2020Q4) to directly estimate the interest rate rule for Ukraine

\[\tilde{i}_t = 1.16 \times \tilde{i}_{t-1} - 0.32 \times \tilde{i}_{t-2} + 0.23 \times (\pi_t - \bar{\pi}_t) + 0.02 \times (y_t - \bar{y}) \]

- Implies \(\phi_\pi = 1.45, \phi_y = 0.14 \) and \(\sigma_{\epsilon_i} = 0.002 \)
Calibration strategy: exogenous processes

- Use data on Ukrainian government consumption to directly estimate the spending process:
 \[\ln G_t = 0.37 \times \ln G_{t-1}, \quad \sigma_G = 0.052 \]

- Use data on households’ lending/deposit spreads to estimate the risk-premium process:
 \[\ln q_t = 0.82 \times \ln q_{t-1}, \quad \sigma_q = 0.007 \]
Calibration strategy: exogenous processes

- Use data on Ukrainian government consumption to directly estimate the spending process:

 \[
 \ln G_t = 0.37 \times \ln G_{t-1}, \quad \sigma_G = 0.052
 \]

- Use data on households’ lending/deposit spreads to estimate the risk-premium process process:

 \[
 \ln q_t = 0.82 \times \ln q_{t-1}, \quad \sigma_q = 0.007
 \]
Calibration strategy: exogenous processes

- Use data on Ukrainian government consumption to directly estimate the spending process:
 \[\ln G_t = 0.37 \times \ln G_{t-1}, \quad \sigma_G = 0.052 \]

- Use data on households’ lending/deposit spreads to estimate the risk-premium process process:
 \[\ln q_t = 0.82 \times \ln q_{t-1}, \quad \sigma_q = 0.007 \]

- Technology and cost-push processes calibrated to match observed persistence and variances of output and inflation
Calibration strategy: the rest

- Import share: $\alpha = 0.35$ (NBU calculations)

- Frisch elasticity: $\frac{1}{\varphi} = 1$

- Calvo parameter: $\theta = 0.55$ (Coibion et al. 2012)

- Within-sector elasticity: $\epsilon = 10$ (Coibion et al. 2012)

- Discount factor: $\beta = 0.995$ (steady-state real rate of 2%) (Grui, Lepushynskyi and Nikolaychuk, 2018)
Initial results
Optimal Inflation Target for Ukraine

![Diagram showing the relationship between inflation target and welfare. The graph peaks at an inflation target of 3%.]

Mishel Ghassibe
Optimal Inflation Target for Ukraine

![Graph showing the relationship between inflation target and welfare. The graph indicates that an inflation target of 3% corresponds to the highest welfare. The US target is marked at 2%.](image-url)
Varying the frequency of price adjustment

![Graph showing the relationship between price stickiness and optimal inflation target.](image-url)
Varying the steady-state real rate

![Graph showing the relationship between optimal inflation target and steady-state real interest rate. The graph indicates that as the steady-state real interest rate increases, the optimal inflation target decreases.]

Mishel Ghassibe
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target.
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under small shocks hitting the economy
Evaluation

Our results most probably give a “conservative” estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under small shocks hitting the economy
 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target doubles
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under small shocks hitting the economy
 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target doubles
 - Logic: price dispersion not sensitive to changes in inflation target when it is low; hence, can (almost) painlessly raise the target until (almost) never reach ZLB
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under small shocks hitting the economy

 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target doubles

 - Logic: price dispersion not sensitive to changes in inflation target when it is low; hence, can (almost) painlessly raise the target until (almost) never reach ZLB

 - Need better understanding of Ukrainian micro data to use such approach
Evaluation

- Our results most probably give a "conservative" estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under **small shocks** hitting the economy
 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target **doubles**
 - Logic: price dispersion not sensitive to changes in inflation target when it is low; hence, can (almost) painlessly raise the target until (almost) never reach ZLB
 - Need better understanding of Ukrainian micro data to use such approach

2. We assume a homogeneous labor marker with no mobility frictions
Evaluation

1. Our results most probably give a "conservative" estimate of the optimal inflation target
 - We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under small shocks hitting the economy
 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target doubles
 - Logic: price dispersion not sensitive to changes in inflation target when it is low; hence, can (almost) painlessly raise the target until (almost) never reach ZLB
 - Need better understanding of Ukrainian micro data to use such approach

2. We assume a homogeneous labor market with no mobility frictions
 - Tends to produce more price dispersion: firms do not internalize the effect of their pricing decisions on the wages they have to pay

Mishel Ghassibe
Optimal Inflation Target
Evaluation

- Our results most probably give a ”conservative” estimate of the optimal inflation target

1. We assume time-dependent probabilities of price adjustment (Calvo)
 - Tends to be a good approximation under **small shocks** hitting the economy
 - Otherwise, menu cost models imply higher optimal targets: Blanco (2021) considers the problem of Coibion et al. (2012) under menu cost frictions, the optimal inflation target **doubles**
 - Logic: price dispersion not sensitive to changes in inflation target when it is low; hence, can (almost) painlessly raise the target until (almost) never reach ZLB
 - Need better understanding of Ukrainian micro data to use such approach

2. We assume a homogeneous labor marker with no mobility frictions
 - Tends to produce more price dispersion: firms do not internalize the effect of their pricing decisions on the wages they have to pay
 - Need better micro understanding of Ukrainian labor market(s) and their mobility to make advanced
Conclusion

- Optimal inflation target is pinned down by the trade-off between:
 - The productive distortions caused by sticky prices and their dispersion (\(\uparrow\) with \(\pi\))
 - The probability of the nominal interest rate reaching the lower bound (\(\downarrow\) with \(\pi\))

- Initial results to quantify the optimal inflation target for Ukraine, in the context of a small open economy New Keynesian model

- Need more work with Ukrainian micro data to make quantitative advances

- Comments welcome!